المسوضوع الثانى

التمرين الأول: (06 نقاط)

 v_3 احسب: v_1 ، v_2 و v_3

 $u_n = v_n + 1$ نضع من أجل كل عدد طبيعي n ؛ n غدد طبيعي (2

 $u_0 = 2$ وحدها الأول q = 5 أ- بيّن أنّ (u_n) متتالية هندسية أساسها

n بدلالة u واستنتج u بدلالة u

ج- حلّل العدد 1250 إلى جداء عوامل أوليّة واستنتج أنّه حد من حدود المتتالية (u)

 $S_n = u_0 + u_1 + \dots + u_{n-1} : S_n = u_0 + u_1 + \dots + u_{n-1}$ (3)

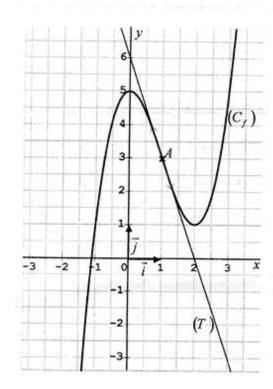
 $S'_{n} = v_{0} + v_{1} + \dots + v_{n-1} : S'_{n} = v_{0} + v_{1} + \dots + v_{n-1} : v_{n-1$

التمرين الثاني: (06 نقاط)

عين الاقتراح الصحيح من بين الاقتراحات الثلاثة في كلّ حالة من الحالات الخمسة مع التبرير:

	الاقتراح (أ)	الاقتراح (ب)	الاقتراح (ج)
1 عدد قواسم العدد 1435 هو:	8	5	2
2 إذا كان [8] a = −1 فإنّ باقي قسمة a على 8 ه	-1	7	6
3 العددان 1435 و 2014 متوافقان بترديد:	2	4	3
y = 2[5] و $x = 2[5]$ فإن:	$x^9 + y^9 = 3[5]$	$x^9 + y^9 \equiv 2[5]$	$x^9 + y^9 \equiv 4[5]$
5 لدينا [6] 21 ≡ 27 إذن:	9 = 7[6]	9 = 7[2]	9 = 7[3]

التمرين الثالث: (08 نقاط)


نعتبر الدالة العددية f المعرفة على \mathbb{R} بتمثيلها البياني (C_f) في المستوي المنسوب إلى المعلم المتعامد المتجانس $O(\vec{i},\vec{j})$ و $O(\vec{i},\vec{j})$ مماس المنحنى $O(\vec{i},\vec{j})$ عند النقطة $O(\vec{i},\vec{j})$ كما في الشكل:

I) بقراءة بيانية:

- $+\infty$ عند ∞ وعند ∞
- 2) أدرس اتجاء تغير الدالة f على \mathbb{R} وشكل جدول تغير اتها.
 - (T) أ) اكتب معادلة للمماس (3
- (T) ادرس وضعیة (C_f) بالنسبة للمماس (C_f) ادرس وضعیة A ثمّ استنتج أنّ A هي نقطة الانعطاف للمنحنى
 - f(x) > 5 عين حلول المتراجحة: 5
 - \mathbb{R} إذا علمت أنّ f معرفة على \mathbb{R} بالشكل:

. حيث: a عددان حقيقيان $f(x) = x^3 + ax^2 + b$

- 1) عين العددين a و b
- 2) تحقق من صحة إجاباتك السابقة حول:
 - أ) اتجاه تغير الدالة f
 - (T) معادلة المماس
 - A نقطة الانعطاف A
 - f(x) > 5:

اختبار مادة: الرياضيات

الشعبة: آداب وفلسفة+لغات أجنبية

المدة: 02سا و 30د

العلامة مجزأة مجموع		7.1-20-17-
		عناصر الإجابة
		الموضوع الثاني
		التمرين الأول: (06 نقاط)
	0.75	$v_3 = 249$, $v_2 = 49$, $v_1 = 9$ (1)
	1	
	2×0.5	
06	0.75	$1250 = 2 \times 5^4$ (\Rightarrow
	0.75	$u_4=1250$ $u_4=1250$ $u_4=1250$ $u_4=1250$
	1	$S_n = \frac{1}{2} (5^n - 1) (5)$
	0.75	$S'_n = \frac{1}{2}(5^n - 1) - n$ (\hookrightarrow
		التمرين الثاني: (06 نقاط)
		1) الإجابة أ التبرير: 41×7×5 = 1435 ومنه عدد القواسم 8 = 2×2×2 أو إيجاد مجموعة
	1+0.5	القو اسم وعدّها
06	0.5+0.5	a = 7[8] الإجابة ب التبرير: $a = -1[8]$ ومنه $a = -1[8]$
	0.5+0.5	(3) الإجابة ج التبرير: 193×3= 1435– 2014
	1+0.5	$y^9 \equiv 2[5]$ ومنه $y^9 \equiv 4[5] = x^9 = 2[5]$ ومنه $y^9 \equiv 2[5]$ الإجابة ج التبرير:
	0.5+0.5	9 الإجابة ب التبرير: $[2\times3] \times 7 = 3 \times 9$ ومنه $[2] 7 = 9$ الإجابة ب التبرير: $[2\times3] \times 7 = 3 \times 9$
		التمرين الثالث: (08 نقاط)
	0.5+0.5	ا. 1) التخمين: $\infty = -\infty$ $\lim_{X \to +\infty} f(X) = +\infty$ و $\infty + = \lim_{X \to -\infty} f(X) = -\infty$
		(2) اتجاه التغير: f متزايدة تماما على كل من $(5;\infty -[$ و $]\infty + ;2]$ ، ومتناقصة تماما
	0.75	على [0;2]
	0.5	جدول التغيرات:
08	0.75	-3 معادلة (T) معادلة (T) معرف بنقطتين أو بنقطة ومعامل التوجيه (T)
		(T) على المجال $[-\infty;1]$ أسفل (T) على المجال $[-\infty;1]$ أعلى (T) أعلى المجال
	0.50	A على المجال $]\infty+$ $[$ و (C_f) يقطع (T) في
	0.25	نقطة الانعطاف: (T) يخترق (C_f) في A ومنه A نقطة الانعطاف
	0.5	4) مجموعة حلول المتراجحة هي]∞+;3[

المدة: 02سا و 30د	الشعبة: آداب وفلسفة+لغات أجنبية	اختبار مادة: الرياضيات
$ \begin{array}{c c} 0.5 + 0.5 \\ 1 \\ 0.5 \\ 0.75 \\ 0.5 \end{array} $	$-\infty + 0 - 2 + +\infty$ وإشارته $-\infty + 0 - 0 - 0 + \infty$ وإشارته $-\infty + 0 - 0 + \infty$ ومتناقصة تماما على $-\infty + 0 = 0$ من $-\infty + 0 = 0$ ومتناقصة تماما على $y = -3x + 6 = 0$	$b = 5$, $a = -3$ (1.11) $f'(x) = 3x^{2} - 6x$ (1) (2) $f \text{ aritimes } f$ $f \text{ aritimes } f$ $f) + 3 : (T) \text{ aritimes } f$ $f) + 3 : (T) \text{ aritimes } f$ $f'(x) = 6x - 6$ $e \text{ aritimes } f'(x) = 6x - 6$

صفحة ...4.../...4....